
 TtaDBMRO Component
Properties Methods Events Tasks See also

The TtaDBMRO component is a descendant of TDBGrid (or TwwDBGrid) that provides Multiple Record
Object capability by accessing data in a database table or query and displaying it in format defined by a
TPanel. This format is duplicated vertically so that the contents of the TPanel appear to be stacked one
above the other.

TtaDBMRO inherits most of the properties of TDBGrid without modification expect for DefaultDrawing,
Options, and TabStop.

RecordPanel defines the layout of the record displayed. For the selected record or row, all editing occurs
in the RecordPanel.

TtaDBMRO supports all standard Borland field data aware controls plus drawing tools such as TBevel,
TLabel, and TGroupBox. Registered users have access to controls from InfoPower, TurboPower, and
Out & About (see Supported Controls). Several hooks are provided for supporting new controls.

Titles may be displayed by using the TitlePanel property. By using the AutoTitleHeight property, the
application can control whether to force the height of titles to be the same as the height of the
RecordPanel.

The ClientHeight of the TtaDBMRO can be set to an exact multiple of the RecordPanel.Height by using
the AutoHeight property. The AutoWidth property is a closely related attribute.

There are several options available to differentiate the appearance of the selected record or row from the
nonselected record or row. The UseColor and UseFont properties simply use the Color and Font
properties of the TtaDBMRO to draw the text fields when displaying nonselected records. The
BackgroundColor property changes the panel color of the nonselected records.

Navigation within the object requires that some code be added to the parent form and, optionally, to the
first and last field in the RecordPanel.

For step by step instructions, see How to Create a MRO.

If you are using the Trial Run version of TtaDBMRO, the component will only run while Delphi is running.
To register your copy of TtaDBMRO, see How to Order.

Installation
To install TtaDBMRO into the component palette:

1. Create a new directory (e.g. d:\TADBMRO)

2. UnZip the files in the new directory

3. (Trial run users only) If using Delphi 1.0, rename TADBMRO.D16 to TADBMRO.DCU. If using
Delphi 2.0, rename TADBMRO.D32 to TADBMRO.DCU.

4. (Optional - registered users only) Using a text editor, modify TADBMRO.INC per the instructions
contained within TADBMRO.INC. This should only be done by those wishing to use
InfoPower's TwwDBGrid as the ancestor to TtaDBMRO (otherwise the ancestor is TDBGrid) or
users wishing to enable Orpheus and/or Out & About support.

5. (Recommended) Backup COMPLIB.DCL

6. Start Delphi, select Options|Install Components (Delphi 1.0) or Components|Install (Delphi 2.0).

7. Click the Add button, then the Browse button and locate MROREG.PAS in your new directory

8. Select it

9. Press OK in the Install Components dialog and wait for the Library to rebuild

10. (Trial run users) Programs can now use TtaDBMRO while Delphi is running

TtaDBMRO is now available in the Data Controls palette.

To install the on-line help:

1. TADBMRO.HLP and TADBMRO.KWF should be in the same directory as TADBMRO.DCU

2. If Delphi is running, shut it down

3. (Recommended) Backup \DELPHI\BIN\DELPHI.HDX

4. Run \DELPHI\HELP\HELPINST

5. File|Open \DELPHI\BIN\DELPHI.HDX

6. If any existing KWF files are "not found", then add the appropriate search paths by selecting
Options|Search Path

7. Select Keywords|Add File menu choice and select d:\TADBMRO\TADBMRO.KWF

8. File|Save

9. Exit the program

10. Check the WINHELP.INI file in the Windows directory and be sure that this entry is included:
taDBMRO.hlp=<fullpath> where <fullpath> indicates the location of the help file

The taDBMRO help files are now installed.

Selected Record
This is the current or focused record in the MRO. Only one record at a time can be the selected record.

Nonselected Record
All other visible records other than the selected record.

White Space
The difference between the height and width of the RecordPanel and the ClientHeight and ClientWidth of
the MRO sometimes produces a gap between the bottom and/or right edges of the RecordPanel and the
bottom and/or right edge of the MRO. Although not necessarily white, this gap is called white space.
See figure in selected record. To manage white space, see AutoHeight and AutoWidth.

Demo Programs
All the demos assume that an alias DBDEMOS exists and that BIOLIFE.DB, CUSTOMER.DB,
EMPLOYEE.DB, ORDERS.DB, and related files are contained within this alias. If this is not the case,
this alias and/or table will have to be re-installed.

All projects/units ending in a numeral are designed to work with TtaDBMRO descending from TDBGrid
(e.g. MROPROJ1.DPR). Those ending in a letter are designed to work with TtaDBMRO descending
from TwwDBGrid (e.g. MROPROJA.DPR). Since this documentation will only refer to demo projects
ending with a numeral, registered users using TwwDBGrid version should simply substitute the equivalent
demo ending with a letter.

MROPROJ1.DPR demonstrates all the major features of TtaDBMRO. Click on the check boxes to toggle
the various features.

MROPROJ2.DPR is an example of how to support a new control.

How to Create a MRO
1. Create a new project.

2. Add a TTable and TDataSource to the form and connect them as usual to a table of your choice.

3. Select a TPanel component and add it to the form.

4. Within Panel1, place all the elements of the record you wish displayed using any standard
Borland field data aware control, TLabel, TBevel, TPanel, and/or TGroupBox.

5. Select the TtaDBMRO component from the Data Control palette and add it to the form.

6. Set the Width of taDBMRO1 to the same width of Panel1 (can be approximate).

7. Set the Height of taDBMRO1 to a multiple of the height of Panel1 (can be approximate). So if
the height of the panel is 80, set the height of the taDBMRO to 240.

8. Set taDBMRO1.DataSource to DataSource1.

9. Set taDBMRO1.RecordPanel to Panel1.

10. Set Form1.KeyPreview to True.

11. Add the following OnKeyDown event to Form1, then run the project:
procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;

 Shift: TShiftState);
begin
 taDBMRO1.FormKeyDown(ActiveControl,Key,Shift)
end;

How TtaDBMRO Works
TtaDBMRO descends from TDBGrid (or TwwDBGrid) and therefore relies on TDBGrid to manage the
connection to the data aware controls. In terms of drawing the screen, TtaDBMRO ensures that the
DataSource has one visible field, but instead of drawing just the text of this single field, it expands the size
of the cell to fit the RecordPanel and then positions the RecordPanel over the cell. This is how the
selected record or row is 'drawn'.

Nonselected records or rows are drawn differently. Instead of duplicating the RecordPanel (and the
controls within the RecordPanel) for the remaining visible rows in the 'grid', TtaDBMRO creates a bitmap
image of them. In this way, no additional Windows resources are consumed. However, in order to
create this image, TtaDBMRO must know how to draw the image of each control within the RecordPanel.
For a list of supported controls, see Supported Controls. Also see Controlling EXE File Size.

TtaDBMRO takes steps to assure that there is only one visible field in the DataSource. Nevertheless,
the application should not change the Visible, DisplayWidth, or DisplayLabel property of any of the fields
in the DataSource at run time.

In order for keystrokes such as Up, Down, PgUp, PgDn, Ctrl+Home, and Ctrl+End to be translated into
the appropriate navigation sequences, some code has to be added to the form and, optionally, to the first
and last field or control in the RecordPanel. See Navigation for a complete discussion on how this is
implemented.

Supported Controls
TtaDBMRO supports all Borland field data aware controls and their descendants: TDBEdit, TDBText,
TDBComboBox, TDBListBox, TDBLookupList, TDBLookupListBox, TDBLookupCombo,
TDBLookupComboBox, TDBCheckBox, TDBRadioGroup, TDBMemo, and TDBImage. In addition, the
following drawing tools are supported: TBevel, TLabel, TGroupBox, and TPanel. Registered users
have access to TwwDBLookupCombo, TwwDBLookupComboDlg, TwwDBComboBox (InfoPower),
TDBComboBoxPlus, TDBLookupComboPlus (Out & About), OvcDBSimpleField, OvcDBPictureField, and
OvcDBNumericField (TurboPower's Orpheus) controls. To use controls that are not descendants of
these controls, see Supporting New Controls.

Trial run versions of many of these tools are available from:

CompuServe Library Internet
TurboPower pcvenb, Lib 6, orphtr.exe http://tpower.com

InfoPower Delphi, Lib 22, infotrl.exe
winapi, Lib 5, infotrl.exe

http://woll2woll.com

Out & About Delphi, Lib 6 & 22,
dbplus1.zip & dbplus2.zip

http://www.computer-shopper.com/
magazine/delphi.htm

TtaDBMRO also supports controls that are TDBCtrlGrid compatible. This support is limited to Delphi 2.0
and the UseColor and UseFont properties will have no affect on these controls.

BLOB Controls
Support for BLOB controls (TDBMemo and TDBImage) was added in version 1.10 There is one limitation
to using BLOB controls: when inserting or appending a new record, all BLOB fields in the MRO become
blank. After the record is posted, the BLOB fields display normally. This behavior is probably why
Borland chose not to support these field types in TDBCtrlGrid.

The following work around is recommended: place this code in the Table1 AfterInsert event:
procedure TForm1.Table1AfterInsert(DataSet: TDataset);
begin
 DataSet.Post;
 DataSet.Edit
end;
Be aware that this work around has two side affects: first, since the record is posted, the record moves
to its index position in the table, so you may want to set a temporary index value, if possible, to keep the
record in the same relative position (usually at the end of the table).

Second, if the user moves off the record without entering any data, the record is not automatically
canceled, so you will need to delete it. This can be overcome by adding this OnBeforePost event to
Table1:
procedure TForm1.Table1BeforePost(DataSet: TDataset);
var i : Integer;
begin
 with DataSet do
 if State = dsEdit then
 begin
 {* This example checks each field, which may not always *}
 {* be appropriate *}
 for i := 0 to FieldCount - 1 do
 if not Fields[i].IsNull then exit;
 Delete;
 Abort
 end
end;
Unfortunately, this event is only called if the record has been modified, so if the user accidentally inserts a
new record and immediately moves off the record, then this code is not executed. Therefore, some code
has to be added to Table1AfterInsert after DataSet.Edit to modify a field and then clear the field. This will
force the Table1.Modifed property to be True, and thus ensure that the above event is called. See
example in MROPROJ1.

Navigation
TtaDBMRO provides two styles of keyboard navigation between the selected record and adjacent
nonselected records. These styles can be used individually or in combination.

Conventional Grid Navigation
The first style is conventional grid navigation where Up, Down, PgUp, PgDn, Ctrl+Home, and Ctrl+End
have their usual meaning. Since the RecordPanel always has the keyboard focus, a means has to be
provided to intercept these keystrokes and translate them into appropriate navigation sequences. To do
this, set the form's KeyPreview property to True and add the following code:
procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;

Shift: TShiftState);
begin
 taDBMRO1.FormKeyDown(ActiveControl,Key,Shift)
end;
If ActiveControl is part of the RecordPanel and Key/Shift are either Up, Down, PgUp, PgDn, Ctrl+Home,
or Ctrl+End, then the routine will perform the navigation and set Key to zero. If the user is on the last
record, dgEditing is enabled, and the table is not ReadOnly, the down arrow key will Append a new
record.

If there are multiple TtaDBMROs in the form, then FormKeyDown will have to be called for each
TtaDBMRO.

This form of navigation is best used when none of the controls in the RecordPanel use the Up or Down
keys. Controls that use these keys, which include TDBComboBox, TDBListBox, TDBLookupList,
TDBLookupCombo, and TDBRadioGroup, will not receive the Up and Down keystrokes if
FormKeyDown is used, so you may want to screen for these controls before calling FormKeyDown.
Alternatively, you may call FormKeyDownExt which automatically screens for these controls.

Tabbing Between Records
The second style is where tabbing from the last control in the RecordPanel advances to the next record
and gives the first control in the RecordPanel the focus (and visa versa). In order to implement this
behavior, four routines have to be added to the form.

In the first and the last controls in the RecordPanel, place the following code in the fields' OnExit routine:
taDBMRO1.FieldOnExit(ActiveControl,TestControl,GotoControl,GotoNext)
where: ActiveControl is the ActiveControl; TestControl is the next (or prior) control in natural tab order;
GotoControl is the control to go to instead of the TestControl; and GotoNext is a Boolean which indicates
the direction to move the RecordPanel.

If taDBMRO1 and the RecordPanel (and those controls contained within the RecordPanel) are the only
controls in the form, then TestControl and GotoControl are the same.

If your form contains TGroupBoxes or TPanels (other than the RecordPanel or TitlePanel) , then
TestControl may be a TGroupBox or TPanel even though these objects aren't normally associated with
getting the focus.

The following code is from MROUNIT1.PAS (part of MROPROJ1.DPR):
procedure TForm1.DBEdit1Exit(Sender: TObject);
begin
 taDBMRO1.FieldOnExit(ActiveControl,UseFontCheckBox,DBEdit11,FALSE)
end;
When DBEdit1 has the focus, a backtab would normally move the focus to UseFontCheckBox. Instead,
this routine will move the focus to DBEdit11 (the last control in the RecordPanel) and move to the
previous record (GotoNext is False).
procedure TForm1.DBEdit11Exit(Sender: TObject);
begin
 taDBMRO1.FieldOnExit(ActiveControl,IndicatorCheckBox,DBEdit1,TRUE)
end;

When DBEdit11 has the focus, a tab would normally move the focus to IndicatorCheckBox. Instead, this
routine will move the focus to DBEdit1 (the first control in the RecordPanel) and move to the next record
(GotoNext is True).

Next, two routines have to be modified in the form. This code goes in the form's declaration:
private
 procedure WMParentNotify(var Msg : TWMParentNotify);
 message WM_PARENTNOTIFY;
protected
 procedure ActiveChanged; override;

And this code implements the routines:
procedure TForm1.WMParentNotify(var Msg : TWMParentNotify);
begin
 taDBMRO1.MonitorFocus(Msg.Event);
 inherited
end;
procedure TForm1.ActiveChanged;
begin
 taDBMRO1.MonitorFocus(WM_SETFOCUS);
 inherited ActiveChanged

end;

MonitorFocus simply looks for WM_LBUTTONDOWN events and ignores the subsequent focus change.
Why? Because the focus changes due to mouse clicks cannot be confused for Tab or BackTab, and this
code keeps track of which is which.

Cursor Navigation
Clicking on a nonselected record automatically gives that record the focus. Clicking on a control in a
nonselected record makes that record the selected record and gives the control the focus. However, this
does not move the caret into an edit field (in the case of a TDBEdit, for example) or, if a
TDBLookupCombo's drop down arrow was clicked, does it drop down the list. A few more things are
needed to do this.

In order to move the caret into the field, drop down a list, or click on a scroll bar, TtaDBMRO uses the
original click to move to the selected recorded, find the control (if any), and saves the mouse coordinates.
Since it is in the middle for a WM_LMOUSEDOWN and WM_LMOUSEUP sequence, it cannot initiate
another mouse press. It has to wait until the original mouse sequence has competed.

The second 'mouse press' is initiated in the Application.OnIdle event. To do this, when mroMouseClick is
True in Flags, taDBMRO temporarily inserts itself into the OnIdle event loop, processes the second
'mouse press', and removes itself from the OnIdle event loop (restoring the previous OnIdle event, if any).
There is nothing further the application needs to do.

If you want to explicitly control the behavior of the OnIdle event and if mroMouseClick is False in Flags,
then following code needs to be added to Form1's OnCreate event:
procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnIdle := taDBMRO1.ApplicationIdle
end;
If there is more than one TtaDBMRO in the application, then each instance of TtaDBMRO would have to
be called.

Changing the Background Color for Nonselected Records
Using a different background color is one way to distinguish the nonselected records from the selected
one. To use a different background color, simply set the BackgroundColor to the appropriate color.

If further customization is needed, use the OnDrawBackground event. The following example only
changes the background color (a result more easily achieved as described above) and does not draw any
of the elements of a TPanel (i.e. BevelInner, BevelOuter):
procedure TForm1.taDBMRO1DrawBackground(Sender: TObject;

Control: TControl; const CellRect: TRect);
begin
 with taDBMRO1.Canvas do
 begin
 Brush.Color := clGreen;
 FillRect(CellRect)
 end
end;

Controlling the Colors and Fonts of Nonselected Records
By default, UseColor and UseFont are both True which forces the use of the Color and Font attributes
when drawing nonselected records. Thus, the easiest way to display the nonselected records with a
different field color and/or font is to change the Color and Font properties. These properties will be
applied to each field in the nonselected records.

To use the same color(s) and font(s) in the nonselected record as the selected record, simply set
UseColor and UseFont both to False. When UseColor is False, the Color of the control in the
RecordPanel is used when drawing each field in the nonselected record. Similarly, if UseFont is False,
then the Font from the control in the RecordPanel is used.

Controlling White Space
The difference between the height and width of the RecordPanel and the ClientHeight and ClientWidth of
the MRO sometimes produces a gap between the bottom and /or right edges of the RecordPanel and the
bottom and/or right edge of the MRO. Although not necessarily white, this gap is called white space.

There are three ways to control white space: First, simply leave the AutoHeight and AutoWidth
properties set to their default settings of True. When set, these properties will automatically manage the
size to the TtaDBMRO so that there will be no white space.

Second, you may adjust the size of the TtaDBMRO manually to eliminate white space. Note, however,
that if you allow the user to toggle certain TtaDBMRO attributes such as dgTitles, dgRowLines, and
dgIndicator, that these actions may introduce white space into the object (AutoHeight and AutoWidth can
manage the toggling of these attributes).

Third, the color of the TtaDBMRO can be chosen to disguise the white space. If the color of the
RecordPanel is clBtnFace, and the background of the nonselected records is clBtnFace (same as the
RecordPanel which is the default), then simply set the color of the TtaDBMRO to clBtnFace.

Supporting New Controls
Before trying to support a new control, be sure to first check to see whether the control in question is a
descendant of a supported control. If so, then nothing further needs to be done. If it is not a
descendant of a supported control, then custom support will have to be provided.

The following example shows how to support TDBComboBox by using the OnDrawControl event. This
control already has native TtaDBMRO support, but is used in the example below and in MROPROJ2.DPR
because to use a non-standard control would assume that the non-standard control is installed on your
computer.
procedure TForm1.taDBMRO1DrawControl(Sender: TObject;

Control: TControl; const CellRect: TRect);
var S : string;
 Rect : TRect;
 DrawFont : TFont;
 Offset : Integer;
begin
 if Control is TDBComboBox then
 with TDBComboBox(Control) do
 begin
 if not Visible then exit;
 S := '';
 if DataSource <> nil then
 try
 S := DataSource.DataSet.FieldByName(DataField).DisplayText;
 except
 on EDatabaseError do
 else raise
 end;
 Rect := CalcRect(Control,CellRect);
 {$IFDEF WIN32}
 if NewStyleControls then InflateRect(Rect,-1,-1);
 {$ENDIF}
 DrawFont := taDBMRO1.FetchFont(Font);
 Offset := taDBMRO1.GetFontOffset(DrawFont);
 taDBMRO1.DrawString(taLeftJustify,taDBMRO1.FetchColor(Color),

Enabled,DrawFont,Offset,Offset,Rect,S);
 taDBMRO1.DrawBorder(bsSingle,Ctl3D,True,Rect)
 end
 else taDBMRO1.DrawControl(Control,CellRect)
end;
The parameters passed to the procedure are: Sender, the TtaDBMRO; Control, the control within the
RecordPanel being drawn; and CellRect, the dimensions of the cell being drawn (this is the area occupied
by the RecordPanel, not the Control within the RecordPanel).

The procedure is responsible for drawing for each control within the RecordPanel. So after the
procedure has added support for the new control it should call DrawControl which will handle the drawing
of all supported controls.

Controls added this way will not be visible in design mode.

If the new control itself contains controls (e.g. a TPanel may contain more than one TDBEdit), then the
routine must call DrawControl for each child control. See the code used in DrawPanel.

See MROPROJ2.DPR. Note that the control will be visible in design mode because the control being
supported in this example has native TtaDBMRO support.

InfoPower Support
By default, TtaDBMRO is a descendant of TDBGrid and installs itself in the 'Data Controls' palette. To
make TtaDBMRO a descendant of TwwDBGrid, simply open the file TADBMRO.INC and make the
changes to the conditional compiler directives as described in TADBMRO.INC. If you have already
installed TtaDBMRO into the Delphi library, you will need to remove it (Options|Install Components, select
Mroreg, and then press Remove). Now simply install (or reinstall) it, following the steps in described in
the Installation section. TtaDBMRO will now be part of the InfoPower palette.

When InfoPower support is enabled, the DataSource and Options properties become their InfoPower
equivalents, TwwDataSource and TwwDBGridOptions. Support will also be enabled for
TwwDBLookupCombo and TwwDBLookupComboDlg (since TwwDBComboBox descends from
TDBComboBox, this control is already supported).

Orpheus Support
To enable support for OvcDBSimpleField, OvcDBPictureField, and OvcDBNumericField controls, simply
enable the appropriate UseOvcDBXxxxField compiler directive(s) in TADBMRO.INC (instructions on how
to do this are contained in the file TADBMRO.INC).

By default, taDBMRO supports version 2.0x of Orpheus. If you wish to use version 1.0x, see the
discussion below.

Be aware there can be key conflicts between FormKeyDown and OvcController1. If you find that the Up
and Down keys not only move to the Prior/Next record but also change the focused field, then you will
need to clear the command assignments for the Up and Down keys in the EntryCommand property of
OvcController1.

Orpheus v1.0x Issues
In order to enable support for Orpheus version 1.0x, the compiler directive UseOrpheus2 must be
disabled in TADBMRO.INC.

There are four things to be aware of when using Orpheus 1.0x controls: First, the application cannot use
the Tag field of any Orpheus control in the RecordPanel. TtaDBMRO uses the Tag field internally. Any
attempt by the application to use the Tag field will result in a General Protection Fault.

Second, in design mode, the nonselected records will be displayed without using the PictureMask for
formatting.

These restrictions are entirely due to the fact that the current version (1.02 as of this writing) of Orpheus
provides no direct way to apply a PictureMask to a string (future versions may support this). Therefore,
in order to duplicate the formatting behavior of an OvcDBXxxxField, TtaDBMRO has to create a non-
visible OvcXxxxField for each OvcDBXxxxField (the Tag field points to the OvcXxxxField). Creating the
OvcXxxxFields while in design mode, while possible, was not deemed worth the added complexity and
was potentially confusing (the OvcXxxxFields are visible in design mode).

Third, Orpheus version 1.01 and earlier has a bug in OvcDBSimpleField that prevents the PictureMask
from being applied to the field. So if the PictureMask is '!' (forces upper case), the contents of the field
are 'Smith', an OvcDBSimpleField will display 'Smith' while the corresponding field in the nonselected
record will display 'SMITH'. Orpheus version 1.02 fixes this problem.

Out & About Support
To enable support for Out & About's TDBComboBoxPlus and TDBLookupComboPlus components, follow
the instructions in the file TADBMRO.INC. If you are using TDBLookupComboPlus and TDBLookupList
in the same application, be sure that the unit DBLookup appears after DBLUP2 in the USES clause.

TtaDBMRO 2.0 or later requires version 4.0 or later of TDBLookupComboPlus and version 2.0 or later of
TDBComboBoxPlus.

ApplicationIdle procedure
Declaration
procedure ApplicationIdle(Sender: TObject; var Done: Boolean);
This procedure is automatically inserted into the Application.OnIdle event loop when mroMouseClick is
True in Flags. If mroMouseClick is False, then place this procedure in the OnIdle event of Application in
order to fully implement mouse support within nonselected records.

See also
Navigation

Example 1 -- One form, one TtaDBMRO, mroMouseClick is False:
procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnIdle := taDBMRO1.ApplicationIdle
end;

Example 2 -- One form, two TtaDBMROs, mroMouseClick is False in both TtaMROs:
private
 { Private declarations }
 procedure DoIdle(Sender: TObject; var Done : Boolean);
procedure TForm1.DoIdle(Sender: TObject; var Done: Boolean);
begin
 taDBMRO1.ApplicationIdle(Sender,Done);
 taDBMRO2.ApplicationIdle(Sender,Done)
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnIdle := Form1.DoIdle
end;

AutoHeight property
Declaration
property AutoHeight: Boolean;
Use this property to automatically adjust the ClientHeight of the TtaDBMRO to be a multiple of the
RecordPanel's height. If False, there can be white space at the bottom edge of the TtaDBMRO. This
property is ignored if Align is alClient, alLeft, or alRight.

The default value of AutoHeight is True.

See also
AutoWidth property

AutoTitleHeight property
Declaration
property AutoTitleHeight: Boolean;
When True, this property forces TitlePanel.Height to be equal to RecordPanel.Height. When False,
TtaDBMRO uses the TitlePanel.Height without adjustment. Set to False if you wish to have a TitlePanel
that is shorter (or taller) than that of the RecordPanel.

If set at run time, be sure to set AutoTitleHeight before setting the TitlePanel property.

If the application allows the user to enable and disable the title, and AutoTitleHeight is False, and
TitlePanel.Height <> RecordPanel.Height, then the application will have to adjust the Height of the
TtaDBMRO so that it does not shrink each time the title is enabled.

The default value of AutoTitleHeight is True.

AutoWidth property
Declaration
property AutoWidth: Boolean;
The Width of the RecordPanel is automatically adjusted to fit inside the ClientWidth of the TtaDBMRO.
However, TDBGrid rounds the drawing area of a cell (and hence the RecordPanel) to multiples of 8 pixels
(this is somewhat of an oversimplification). This means there can be a gap of up to 7 pixels on the right
edge of the TtaDBMRO.

Use this property to automatically adjust the ClientWidth of the TtaDBMRO to eliminate this gap. If
False, there can be white space at the right edge of the TtaDBMRO. This property is ignored if Align is
alClient, alTop, or alBottom.

The default value of AutoWidth is True.

See also
AutoHeight property

BackgroundColor property
Declaration
property BackgroundColor: TColor;
This property controls the background color for the nonselected records.

The default value of BackgroundColor is clBtnFace.

See also
Controlling the Background Color of Nonselected Records

CalcRect function
Declaration
function CalcRect(Control: TControl; const CellRect: TRect): TRect;
A function usually called within a drawing routine to calculate the coordinates of the Control within the
CellRect.

See also
Supporting New Controls

DefaultDrawing property
Declaration
property DefaultDrawing: Boolean;
This property is set to False by TtaDBMRO and should remain False in order for the object to behave
properly.

The default value of DefaultDrawing is False.

Dither95 constant
This variable became private in v1.11.

DrawBorder procedure
Declaration
procedure DrawBorder(Style: BorderStyle; Ctl3D,TwoTone: Boolean;
 const CellRect: TRect); virtual;

A virtual procedure used within TtaDBMRO to draw the border of the Control in the nonselected records.

See also
Supporting New Controls,

DrawString procedure, OnDrawControl event

DrawControl procedure
Declaration
procedure DrawControl(Control: TControl; const CellRect: TRect); virtual;
Control is the TControl being drawn. CellRect is the area occupied by the RecordPanel, not the Control
within the RecordPanel. See Supported Controls for a list of valid controls.

See also
Supporting New Controls, DrawBorder procedure, OnDrawControl event

DrawString procedure
Declaration
procedure DrawString(Alignment: TAlignment ; Color: TColor;

Enabled: Boolean; Font: TFont; OffsetX,OffsetY: Integer;
Rect: TRect; const Text: string); virtual;

A virtual procedure used within TtaDBMRO to draw the text of a control in the nonselected records.

See also
Supporting New Controls, DrawBorder procedure, GetFontOffset function, FetchColor function, FetchFont
procedure, OnDrawControl event

GetFontOffset procedure
Declaration
procedure GetFontOffset(AFont: TFont): Integer;
Returns the Offset parameter used by DrawString to position text within the drawing region.

See also
Supporting New Controls, FetchFont function

FetchColor function
Declaration
function FetchColor(Value: TColor): TColor;
If UseColor is False, returns Value, else returns TtaDBMRO.Color.

See also
FetchFont function, Supporting New Controls

FetchFont function
Declaration
function FetchFont(Value: TFont): TFont;
If UseFont is False, returns Value, else returns TtaDBMRO.Font.

See also
FetchColor function, Supporting New Controls

FieldOnExit procedure
Declaration
procedure FieldOnExit(ActiveControl,TestControl,GotoControl:

TWinControl; GotoNext: Boolean);

This routine, when used in conjunction with MonitorFocus, allows the application to implement tab
oriented navigation between the last field in the RecordPanel and the first field in the next record (and
visa versa). ActiveControl is the ActiveControl. TestControl is the next (prior) control in tab order.
When ActiveControl is equal to TestControl, the routine forces the focus to GotoControl. GotoNext
indicates the direction to move.

See also
Navigation, FormKeyDown procedure, MonitorFocus procedure

Flags property
Declaration
property Flags: TMROFlags;
These are the possible values that can be included in the Flags set for the taDBMRO control:

Value Meaning
mroAutoCursor When True, as the user moves the cursor over a field in a nonselected

record, the cursor will assume the shape corresponding to that field.
When False, the cursor will not change shape when moving over fields
in nonselected records.

mroMouseClick When True, taDBMRO automatically inserts itself into the
Application.OnIdle event loop resulting in mouse clicks moving the caret
into the field or dropping down lists when pressed over a button.

mroBtnWidth When True and running under Win95, all drop down buttons (except in
TDBComboBoxes) in the nonselected record will be 16 pixels wide.
When False and running under Win95, the drop down buttons will have
a width equal to GetSystemMetrics(SM_CXVSCROLL).

The default value of Flags is [mroAutoCursor, mroMouseClick, mroBtnWidth].

The purpose of mroBtnWidth is to compensate for the fact that most controls containing buttons do not
use the SM_CXVSCROLL parameter in sizing the width of their buttons under Win95 (TDBComboBoxes
do size their buttons correctly). The only reason to change mroBtnWidth to False would be if a vendor
released a new version of their control that did use SM_CXVSCROLL to size their button under Win95.

FormKeyDown procedure
Declaration
procedure FormKeyDown(Sender: TObject; var Key: Word;

Shift: TShiftState);

This routine should be placed in the form's OnKeyDown event in order to implement record navigation for
the following keys: Up, Down, PgUp, PgDn, Ctrl+Home, and Ctrl+End. Be sure to set the form's
KeyPreview property to True.

Orpheus users should be aware that some of these key assignments may conflict with OvcController1 key
assignments. For more details, see Orpheus Support.

See also
FieldOnExit procedure, FormKeyDownExt procedure, MonitorFocus procedure, Navigation

Example
procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;

Shift: TShiftState);
begin
 taDBMRO1.FormKeyDown(ActiveControl,Key,Shift)
end;

FormKeyDownExt procedure
Declaration
procedure FormKeyDownExt(Sender: TObject; var Key: Word;

 Shift: TShiftState);

Same as FormKeyDown, but checks to see whether Sender is a control that normally processes
navigation keys (Up, Down, PgUp, PgDn, Ctrl+Home, and Ctrl+End). If the control does not normally
process these navigation keys, then FormKeyDown is called. If the control does normally process
navigation keys (e.g. TDBLookupCombo), then the routine does nothing.

See also
FieldOnExit procedure, MonitorFocus procedure, Navigation

Example
procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;

Shift: TShiftState);
begin
 taDBMRO1.FormKeyDownExt(ActiveControl,Key,Shift)
end;

MonitorFocus procedure
Declaration
procedure MonitorFocus(WinMsg: Word);
This routine, when used in conjunction with FieldOnExit, allows the application to implement tab oriented
navigation between the last field in the RecordPanel and the first field in the next record (and visa versa).
MonitorFocus must be called from the form's WMParentNotify and ActiveChanged procedures where
WinMsg is Msg.Event (in WMParentNotify) and WM_SETFOCUS (in ActiveChanged).

See also
Navigation

Example
procedure TForm1.WMParentNotify(var Msg : TWMParentNotify);
begin
 taDBMRO1.MonitorFocus(Msg.Event);
 inherited
end;

OnDrawBackground event
Declaration
property OnDrawBackground: TMRODrawEvent;
Use this property to override the default drawing of the background region of the nonselected records.

See also
Changing the Background Color for Nonselected Records

Example
procedure TForm1.taDBMRO1DrawBackground(Sender: TObject;

Control: TControl; const CellRect: TRect);
begin
 with taDBMRO1.Canvas do
 begin
 Brush.Color := clGreen;
 FillRect(CellRect)
 end
end;

OnDrawControl event
Declaration
property OnDrawControl: TMRODrawEvent;
Use this property to override the default drawing of controls within nonselected records. If set, this event
is called rather than DrawControl.

See also
Supporting New Controls, DrawString procedure, DrawBorder procedure

OnPrepareLookup event
Declaration
property OnPrepareLookup: TMROPrepareEvent;
Use this property to override the default lookup behavior for TDBLookupCombo, TDBLookupComboPlus,
and TwwDBLookupCombo. When TtaDBMRO performs a lookup, it only searches on one field. Since
some of these controls provides the ability to lookup multiple fields, you can use this event to implement
more sophisticated lookups.

Options property
Declaration
property Options: TDBGridOptions;
Same as TDBGrid.Options except that dgColLines and dgColumnResize are forced to be False and the
default values are slightly different. When dgRowLines is enabled and AutoHeight is True or when
dgIndicator is enabled and AutoWidth is True, the dimension(s) of TtaDBMRO will grow in order maintain
the same number of visible rows.

The default value of Options is [dgEditing,dgConfirmDelete,dgCancelOnExit]

RecordPanel property
Declaration
property RecordPanel: TPanel;
This TPanel contains all the data aware controls that will be displayed in the TtaDBMRO. RecordPanel
may contain any Borland, InfoPower, Orpheus, and/or Out & About Productions field data aware control.
Hooks are provided to allow developers to support other controls.

See also
Supported Controls , Supporting New Controls , and TitlePanel property

TabStop property
Declaration
property TabStop: Boolean;
Same as TDBGrid.TabStop but with a default value of False. Generally, TtaDBMRO should not have the
TabStop property set to True. Instead, tabbing should move into (or from) a control in the RecordPanel.

The default value for TabStop is False.

See also
Navigation

TitlePanel property
Declaration
property TitlePanel: TPanel;
An optional property that when set, and when dgTitles is set in Options, will display the TitlePanel on the
top edge of the TtaDBMRO. Fill the TitlePanel with TLabels (or any other object) to serve as titles for the
individual fields in the RecordPanel. If the application allows the dgTitles property to be toggled,
TtaDBMRO will toggle the TitlePanel.Visible property.

See also
AutoTitleHeight property

TMRODrawEvent type
Declaration
TMRODrawEvent = procedure(Sender: TObject; Control: TControl;

const CellRect: TRect);
Event type for OnDrawBackground and OnDrawControl.

See also
Controlling the Colors and Fonts of Nonselected Records

TMROFlags type
Declaration
TMROFlag = (mroAutoCursor,mroMouseClick,mroBtnWidth);
TMROFlags = set of TMROFlag;
The TMROFlags type is a set that defines the possible values of the Flags property.

TMROPrepareEvent type
Declaration
TMROPrepareEvent = procedure(Sender: TObject; Control: TControl;
 var S : string);
Event type for OnPrepareLookup. The event should return a string S to be displayed inside the control.

UseColor property
Declaration
property UseColor: Boolean;
When True, the Color property is used when drawing each field within the nonselected records. When
False, the colors of the fields in the nonselected records will match those of the corresponding fields in
the RecordPanel.

The default value of UseColor is True.

See also
UseFont property, Controlling the Colors and Fonts of Nonselected Records

UseFont property
Declaration
property UseFont: Boolean;
When True, the Font property is used when drawing each field within the nonselected records. When
False, the fonts of the fields in the nonselected records will match those of the corresponding fields in the
RecordPanel.

The default value of UseFont is True.

See also
UseColor property, Controlling the Colors and Fonts of Nonselected Records

WinStyle variable
This variable was removed in version 2.0 and replaced by NewStyleControls.

Controlling EXE File Size (TADBMRO.INC)
TADBMRO.INC serves a dual purpose: the primary function of the file is to enable or disable support for
third party tools, including whether TtaDBMRO descends from a TDBGrid or InfoPower's TwwDBGrid.

The second function is closely related to the first, but with a subtle distinction: TADBMRO.INC provides
options for disabling standard controls (as well as third party controls).

Why would one want to disable support for a standard control? To reduce the size of the EXE file.
When TtaDBMRO draws nonselected records, it tests each control in the RecordPanel to see whether it
is a supported control. This testing process requires that code from the supported control be included in
the EXE file even if that type of control is not in the RecordPanel. The only way to eliminated the
unnecessary code is via the compiler directives contained in TADBMRO.INC.

To illustrate the impact this can have, compiling MROPROJ2 under Delphi 1.0 with support for all
standard controls plus the three Orpheus and two Out & About controls results in an EXE file size of
845KB. Disabling support for all controls other than TDBEdit by changing the compiler directives in
TADBMRO.INC results in an EXE file size of 504KB, or 341KB difference.

The following strategy is recommended: enable all the compiler directives in TADBMRO.INC that you
are likely to use and compile COMPLIB.DCL and your applications during the development cycle using
these settings. When your application is nearing the end of the development cycle, then disable support
for controls not needed by the application.

Limitations
TtaDBMRO is a descendant of TDBGrid and therefore relies on TDBGrid to provide data awareness and
to manage some aspects of painting the screen. Not surprisingly, there are a few conflicts between how
a TDBGrid paints the screen and how a MRO should paint the screen. Since these conflicts cannot be
resolved without making changes in TDBGrid itself, and since most of the conflicts can be avoided, these
limitations will simply be spelled out and work arounds noted.

There are three main limitations: First, records managed by a TtaDBMRO must be vertically stacked and
never side by side. This limitation may be removed in subsequent versions.

Second, TtaDBMRO is prone to produce white space on the bottom and right edges (see definition of
white space below). This can be overcome by: adjusting the height and width of the TtaDBMRO
manually; using the AutoHeight and AutoWidth properties to manage TtaDBMRO's dimensions; or by the
appropriate selection of colors.

And third, keyboard navigation within the MRO is not automatic. Extra code has to be added to the form,
and optionally to two controls, in order to implement keyboard navigation.

Troubleshooting
Changes to the RecordPanel in design mode not reflected in nonselected records
The nonselected records in the MRO just needs to be redrawn. Click on the scroll bar and the
appearance of the nonselected records will be updated.

Control in RecordPanel is not duplicated in nonselected records
The control may not be supported by TtaDBMRO. See section Supporting New Controls. Also check
TADBMRO.INC to see if support for the control may have been disabled.

Control duplicated in nonselected records in design mode, but not while executing, or visa versa
COMPLIB.DCL and the EXE file were compiled with different versions of TADBMRO.INC. Make sure
both COMPLIB.DCL and the EXE file were compiled with the same version.

Can't navigate to the next/prior displayed record via the keyboard
Make sure that Form1.KeyPreview is True and that taDBMRO1.FormKeyDown is in the OnKeyDown
event of Form1. See Navigation.

Tabbing between records isn't working
If you have followed the instructions described in Tabbing Between Records and you are still having a
problem, the most likely cause is that some other control is temporarily getting the focus before
TestControl does in the FieldOnExit routine. In most cases, this turns out to be a TGroupBox or TPanel
(other than the RecordPanel or TitlePanel). Try replacing the current TestControl with the TGroupBox or
TPanel.

Clicking on a region of the selected record that is not occupied by a control leaves no control with
the focus
You can move the focus to a specific control by adding an OnClick event to the RecordPanel:
procedure TForm1.Panel1Click(Sender: TObject);
begin
 DBEdit1.SetFocus
end;
taDBMRO does not install properly
The most common installation problem is one in which by adding 'd:\tadbmro' to the search path (see
Options|Install Components|Search Path) causes the maximum length of the search path to be exceeded.
The only solution is to shorten the length of the path names or combining multiple directories into a single
directory.

Up and Down keys not working for TDBLookupCombo, TDBLookupList, ...
Check to see whether taDBMRO1.FormKeyDown is being called in Form1.FormKeyDown. If so, call
taDBMRO1.FormKeyDownExt.

Can TDBLookupComboPlus coexist with keyboard navigation?
Yes, if it is okay to drop down the lookup list via Alt+Down rather than Down. The trick here is to use
taDBMRO1.FormKeyDown under all conditions except when the drop down list is visible:
procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word;

Shift: TShiftState);
begin
 if (not (ActiveControl is TDBLookupComboPlus)) or
 (not (ActiveControl as TDBLookupComboPlus).ListVisible) then
 taDBMRO1.FormKeyDown(ActiveControl,Key,Shift)
end;

Horizontal scroll bar appears on the bottom of the TtaDBMRO
Check to make sure that only one field in the DataSource has the Visible property set to True and set the
DisplayWidth of the visible field to a small value (e.g. 1) and DisplayLabel of the visible field is short or
blank. Your program should not alter the Visible property of any of the fields or change the DisplayWidth
or DisplayLabel of the visible field. If you did not set a field visible, TtaDBMRO will select one for you
(usually the first field). Also check that the Height and Width of the TtaDBMRO is greater than
RecordPanel.Height and RecordPanel.Width.

If this occurs when InfoPower support is enabled, the taDBMRO is on a tabbed notebook or page, and the
DataSource.DataSet.Active property is being toggled, add the following code after the Active property has
been set to True:

taDBMRO1.DataSource := wwDataSource1;
taDBMRO1.DataSource.DataSet.First;

Sluggish TtaDBMRO redraw
Check to make sure that only one field in the DataSource has the Visible property set to True and that
DefaultDrawing has not been set to True.

Excessive screen flicker
To minimize flicker, the Color and BackgroundColor of the taDBMRO should be the same as
RecordPanel.Color. If RecordPanel.Color is different from BackgroundColor, then set the Color of the
taDBMRO to the same color as BackgroundColor.

Clicking on a field in a nonselected record does not move the caret into the field
You need to add either set mroMouseClick to True in the Flags property or set Application.OnIdle to
taDBMRO1.ApplicationIdle. See Navigation.

Demo program will not compile
Check to see if TtaDBMRO has been installed properly. If not, rebuild your library. Each demo has two
versions: one for TtaDBMRO descending from TDBGrid and one for TtaDBMRO descending from
TwwDBGrid. Make sure you are using the correct one. See instructions under Demo Programs.

Demo program doesn't duplicate fields in nonselected record
Check to see if any of the compiler directives in TADBMRO.INC have been disabled for standard Borland
controls. If so, enable them. On the '3d Party' page of MROPROJ1, only those controls that are both
installed and enabled will appear.

Application GPF while using Orpheus 1.0x data aware controls
Check the Tag field of all Orpheus data aware controls in the RecordPanel and make sure it is zero.
Setting the Tag field to a non zero value in design mode will cause a GPF in complib.dcl, while doing so at
run time will cause a GPF in the application.

Error 15: File not found (xxxxx.DCU)
Check to make sure the compiler directives in TADBMRO.INC are set correctly. Enabling a compiler
option means that the related component(s) must already be installed. If they are not, the installation or
rebuild of TtaDBMRO will fail and generate the above error message. The offending compiler directive
can usually be found in the Uses clause near 'xxxxx'.

How to Order
To receive a registered version of TtaDBMRO, which includes all source code, support for TwwDBGrid
and TDBLookupComboPlus, technical support, along with free updates of version 2.x, just send $25
U.S. with the order form that appears at the end of this document. Or you may email your name,
address, MasterCard or Visa number, and expiration date to Tamarack Associates at
72365.46@compuserve.com. Sales tax will be added to California orders. Delivery is free via
CompuServe or Internet, $5 in North America (Canada, Mexico, & U.S)., $10 outside of North America.
Please specify 3.5" or 5.25" diskettes.

TtaDBMRO is also available through CompuServe SWREG for $29.95 (CompuServe charges Tamarack
Associates a 15% handling fee). The SWREG registration ID is 8213.

Please read the Purchase Agreement before registering.

Version History
The latest version of TtaDBMRO can always be found on CompuServe in the Delphi and BDelphi forums,
Lib 22 (3d Party Products), in MRO.ZIP.

05/06/96 Version 2.00 Delphi 2.0 support added
TDBLookupComboBox support added
TDBLookupListBox support added
DrawText procedure renamed DrawString
TwoTone parameter added to DrawBorder procedure
Ctrl+Del deletes the current record
WinStyle variable replaced with NewStyleControls

02/23/96 Version 1.12 taDBMRO1.BorderStyle = bsNone problem fixed
RecordPanel.OnClick event properly recognized
FormKeyDown now works with non-TTable DataSets
Improved error handling
Compatible with TDBLookupComboPlus 4.0
Compatible with TDBComboBoxPlus 2.0

01/03/96 Version 1.11 Support added for TwwDBLookupComboDlg
Support for DataType <> ftMemo added for TDBMemo controls
System color changes handled properly
Dither95 constant is no longer public
Win95 scroll bar colors always drawn properly
TDBLookupComboPlus works properly when LookupIndex set
Improved appearance of disabled controls in obscure color
combinations
Flags property added
Width of drop down buttons under Win95 corrected

12/04/95 Version 1.10 TDBCheckBox, TDBRadioGroup, TDBListBox, TDBLookupList,
TDBMemo, and TDBImage support added
Full cursor support for nonselected records added
WinStyle variable and TWinStyle type added
Dither95 typed constant added
FormKeyDown now uses Append rather than Insert
FormKeyDownExt procedure added
Ctl3D parameter added to DrawBorder procedure
Enabled parameter added to DrawText procedure
DrawText Offset parameter changed to OffsetX & OffsetY
OnPrepareLookup event & TMROPrepareEvent type added
Ctl3D & Enabled properties correctly handled
TDBLookupCombo now handles DisplayField
Underscores for accelerators now drawn (e.g. &File is File)
TPanel.BorderStyle = bsSingle now drawn correctly
Design mode GPF when Record/TitlePanel deleted fixed
Field's Visible property no longer has to be set in design mode
Additional compiler directives added to TADBMRO.INC
Losing character when inserting very first record fixed
Moving off inserted records that are unmodified handled better
BackgroundColor, broken in 1.01, fixed
README.1xx file added to distribution list

11/12/95 Version 1.01 TGroupBox, Orpheus, and TDBComboBoxPlus support added
Setting RecordPanel to NIL no longer causes GPF
Flicker after moving out of an edited field eliminated
Clicking problem on TDBComboBox fixed

TPanel (other than RecordPanel) now respects UseFont & UseColor
STATES.DB and STATES.PX no longer needed for MROPROJ2
Minor adjustments to height calculations
Minor adjustment to positioning of right justified text
TADBMRO.INT added to trial run version

10/31/95 Version 1.00 First release

Purchase Agreement
Terms of License Agreement
The TtaDBMRO programs and documentation are the property of Tamarack Associates and are protected
by United States Copyright Law, Title 17 U.S. Code, are licensed for use by one person only on as many
computers as that person uses.

Where a group of programmers are working together on a project that makes use of TtaDBMRO, we
expect that a copy of the software and documentation will be purchased for each member of the group.
Contact Tamarack Associates for volume discounts.

You may duplicate the TtaDBMRO programs and documentation files for backup use only.

You may distribute without further licenses or run time fees applications that make use of TtaDBMRO.
You may not distribute or duplicate any documentation, source code, or DCU files other than described
above.

Limited Warranty
TAMARACK ASSOCIATES MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED,
INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT WILL TAMARACK ASSOCIATES BE LIABLE TO YOU OR ANY THIRD PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUR OF
THE USE OF OR INABILITY TO USE THE PROGRAM OR MANUAL.

By using this product, you agree to this. If you do not agree, immediately return this product for refund.

Development Environment
TtaDBMRO was developed with Delphi 1.02 and 2.0 running under WFWG 3.11, Win95, and NT 3.51 with
16MB of RAM using Paradox tables. Orpheus 2.0, InfoPower 1.2, DBPlus1 2.1, DBPlus2 4.1.

Trademarks
Borland and Paradox are trademarks of Borland International.

Orpheus is a trademark of TurboPower Software.

InfoPower is a trademark of Woll2Woll Software.

Technical Support
Questions, bug reports and suggestions may be directed to:

Tamarack Associates
CompuServe 72365,46
Internet 72365.46@compuserve.com
(415) 322-2827 (Voice & Fax)

Please clearly state what compiler options have been set in TADBMRO.INC.

Files
Trial run version includes:
MROREG.PAS Source code for registering taDBMRO
MROPROJ1.DPR Project file for main demonstration program
MROUNIT1.DFM Form file for main demonstration program
MROUNIT1.PAS Source code for main demonstration program
MROPROJ2.DPR Project file for second demo
MROUNIT2.DFM Form file for second demo
MROUNIT2.PAS Source code for second demo
README.TXT Brief installation instructions
README.2xx Brief description of version changes
TADBMRO.D16 Delphi 16 bit DCU file (Trial Run only)
TADBMRO.D32 Delphi 32 bit DCU file (Trial Run only)
TADBMRO.HLP Help file
TADBMRO.INC Contains conditional compiler directives
TADBMRO.INT TADBMRO.PAS interface section (Trial Run only)
TADBMRO.KWF Help keyword file
TADBMRO.RES Resource file
TADBMRO.WRI This file

Registered version includes these additional files:
TADBMRO.PAS Source code
MROPROJA.DPR Same as MROPROJ1, but with TwwDBGrid ancestor
MROUNITA.DFM Same as MROUNIT1, but with TwwDBGrid ancestor
MROUNITA.PAS Same as MROUNIT1, but with TwwDBGrid ancestor
MROPROJB.DPR Same as MROPROJ2, but with TwwDBGrid ancestor
MROUNITB.DFM Same as MROUNIT2, but with TwwDBGrid ancestor
MROUNITB.PAS Same as MROUNIT2, but with TwwDBGrid ancestor

Order Form
TtaDBMRO 2.x

Tamarack Associates
868 Lincoln Avenue

Palo Alto, CA 94301 USA
415-322-2827 (Voice & Fax*)
72365.46@compuserve.com

Name ____________________________

Company ____________________________

Address ____________________________

City ____________________________

State ____________________________

Country ____________________________

Zip/Postal Code ____________________________

Email ____________________________

Phone ____________________________

Credit Card ___ MasterCard ___ Visa

Card Number ___________________________

Expiration Date ___________________________

Number of copies _____ 3.5" ___ 5.25" ___

Price per copy $25 U.S.

Subtotal _____

Sales tax _____ (California residents only)

Shipping & handling _____ (see below)

Total _____

Shipping & handling: CIS/Internet - none; North America - $5; outside North America - $10.

TtaDBMRO may also be registered through CompuServe SWREG 8213 for $29.95.

Please read Purchase Agreement before ordering.

*The fax machine can take as long as 45 seconds to answer. Set your fax accordingly.

Properties
AutoHeight

AutoTitleHeight

AutoWidth

BackgroundColor

DefaultDrawing

Flags

Options

RecordPanel

TabStop

TitlePanel

UseColor

UseFont

Methods
ApplicationIdle

CalcRect

DrawBorder

DrawControl

DrawString

GetFontOffset

FetchColor

FetchFont

FieldOnExit

FormKeyDown

FormKeyDownExt

MonitorFocus

Events
OnDrawBackground

OnDrawControl

OnPrepareLookup

Tasks
Changing the Background Color for Nonselected Records

Controlling the Colors and Fonts of Nonselected Records

Controlling White Space

How to Create a MRO

InfoPower Support

Installation

Navigation

Orpheus Support

Out & About Support

Supported Controls

Supporting New Controls

See Also
BLOB Controls

Controlling EXE File Size

Demo Programs

Files

How taDBMRO Works

How to Order

Purchase Agreement

Troubleshooting

Version History

